Improving stock market prediction via heterogeneous information fusion
نویسندگان
چکیده
منابع مشابه
Improving stock market prediction via heterogeneous information fusion
Traditional stock market prediction approaches commonly utilize the historical price-related data of the stocks to forecast their future trends. As the Web information grows, recently some works try to explore financial news to improve the prediction. Effective indicators, e.g., the events related to the stocks and the people’s sentiments towards the market and stocks, have been proved to play ...
متن کاملInformation-based multi-assets artificial stock market with heterogeneous agents
In this paper, an artificial stock market characterized by heterogeneous and informed agents is presented. The heterogeneous agents are seen as nodes of sparsely connected graphs. The agents trade risky assets and are characterized by sentiments, amount of cash and stocks owned. Agents share information and sentiments by means of interactions determined by graphs. A central market maker (cleari...
متن کاملEvent-based stock market prediction
There are various studies on the behavior of the market. In particular, derivatives such as futures and options have taken a lot of attentions, lately. Predicting these derivatives is not only important for the risk management purposes, but also for price speculative activities. Besides that accurate prediction of the market’s direction can help investors to gain enormous profits with small amo...
متن کاملStock Market Analysis and Prediction
Stock market analysis is a widely studied problem as it offers practical applications for signal processing and predictive methods and a tangible financial reward. Creating a system that yields consistent returns is extremely challenging and is currently an open problem as stock market prices are extremely volatile and vary widely both within a given stock and comparatively amongst many stocks....
متن کاملParameters for Stock Market Prediction
In recent years researchers have developed a lot of interest in stock market prediction because of its dynamic & unpredictable nature. Although there were lots of methods of prediction none of them is prove to produce satisfactory results. Machine learning techniques proved to be better than other methods because of its ability of nonlinear mapping. In this paper we survey different input param...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Knowledge-Based Systems
سال: 2018
ISSN: 0950-7051
DOI: 10.1016/j.knosys.2017.12.025